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LElTER TO THE EDITOR 

Factorization relations and Wigner's rotation matrices 

A Ernesti and H J Korsch 
Fachbereich Physik, Univenitat Kaiserslautem, D-6750 Kaisenlautem, Federal Republic 
of Germany 

Received 18 March 1992 

AbslracL A factorization iormula for L e  squared Wigner rotation [unction is derived. 
General properties of the mefficients and special m e s  are discussed. I h e  mnnection 
with recent factorization relations for vibrational transition probabilities in harmonic and 
anharmonic oscillators is studied. 

Rctorization formulae are known in the theory of inelastic collisions from initially ex- 
cited states, reflecting the fact that the essential dynamics of a process is independent 
of the initial state, which enters only in a statistical manner. The most popular factor- 
ization relation appears in rotational transitions of diatomic molecules by collisions 
under sudden conditions. Here the transition probabilities for rotational transitions 
j -t j' are related by ~~ [l, 21 ~ 

to the rotational transition probabilities for transitions 0 - j" out of the rotational 
ground state. The weight coefficients 

c;'),,j = ( 2 j '  + 1) (j; ; ;)? 

are unaffected by the dynamical quantities determining the collision process. Note 
that the same factorization formuia is vaiid for aiiierenriai ana integrai state-to- 
state cross sections, and also for transition rates [l]. The mechanism underlying 
the factorization relation is most clearly demonstrated in a classical version of the 
factorization equation [3, 41. 

A similar factorization relation has been derived recently for vibrational transitions 
under sudden mnditions [SI and, more generally, for the celebrated linearly forced 
harmonic oscillator [6] as well as an anharmonic model [6]. 

In the present letter we derive a similar factorization relation for the square of 
the Wigner functions (or Wigner's rotation matrices). It is shown that these results 
directly yield the vibrational factorization relations without any further dynamical 
consideration, thus underlining their purely algebraic nature. 
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The Mgner function, D i  m,(4J ,29 , [ )  [7, 8, 91, may be represented as a product 
of three functions depending on a single angle 

(3) imQ d j  ( 9 )  .-im'E ~,i ,,,,(~J,O,C) = e -  ,,, ,, 

where &, ,,,, is a real function. The explicit form of the Wigner function d i  ,, is 
Y eiwn by !7; 8j 

d, i ,,,,(29) = [(j + m')! (j - m')! (j + m)! ( j  - m)! 

(-1)" 
(j - m - u)! (j + m'- u)! (u + m - m')! u! 

,,,-"+a" x (cos (29/2))2J+"-m-2u ( - s in (d /2 ) )  (4) 

with -j < m, m' < j .  
The square 

can be easily interpreted in terms of the vector model as the probability that a vector 
of length dj(j + 1) and projection m on a Z-axis leads to a projection m' on an 
axis 2' with the same origin, but inclined by an angle 29 (see, e.g. [7, chapter 3.61 
and [lo]). 

For the following considerations it is convenient to shift the indices by defining 
n = j - m and n' = j - m' and 

- .  
P:,n(9) := P,'_n, j -n(9)  

For the special case n = 0 we have 

and the explicit expression (4) yields 

1 
X 

( p  - l ) !  ( n  - p + I ) !  ( 2 j  - n'- p + l ) !  ( p  - 1 - n + n')! 

- ine  desired factorization formuia is now obtained by repiacing the index p by 
p = n" + n' - n and using (7). which immediately yields 

P,! " ( 2 9 )  =xC;n, ln l  PL,, , (d )  (9) 
",' 
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where the coefficients are given by 

, = c,. .I," 

c (, TI'' ,) (, n ) (, n' ) ( 2 j  - n')! ( 2 j  - n")! ( 2 j  - n)! 
2 - 11 2 - n" 2 - 11 (2j)!  (2 j  - i)! ( 2 j  - s f i)! 

(10) 

with s = n+n'+n". 'The range of the summation indices for the non-zero coefficients 
is limited by 

In'-nl< n " < m i n ( n + n ' , 4 j - n - n ' )  (11) 
max(n, n',n",2j - s) < i < min(n + n', n" + n,n' + n " , 2 j ) .  (12) 

Equation (9) closely resembles the rotational factorization relation (1). It expresses 
the probabilities that an angular momentum making a projection m = j - n on a Z- 
axis will be found making a projection m' = j - n on the rotated Z'-axis in terms of 
those probabilities for finding a Z'-projection m" = j -n" for an initial 2-projection 
j ,  i.e. a maximum orientation along this axis. It is remarkable that the knowledge 
of this set of numbers, i.e. the magnitudes of a single row of the rotation matrix, is 
sufficient to generate all other probabilities. Let us note that the weight coefficients 
Cj, ,,,, ,, are purely algebraic quantities and independent of the angle of inclination 
29. Let us furthermore note that these weight coelficients can be negative as well as 
positive depending on the parity of the states involved, and that their magnitude can 
exceed unity, thus complicating a purely geometric or classical interpretation of the 
factorization relation (9) as in the case of the formula (1) for rotational transition 
probabilities. 

appearing in the factorization 
formula should be noted: 

(i) The coefficients are symmetric in all lower indices 

Some useful properties of the coefficients e:,, ,,, 

as & obvious from (10). 

(ii) If one of the lower indices vanishes the coelficients are diagonal and equal to 
unity; e:g: 

(14) j - C,. ,,rr 0 - 6,3 ,n . 

The factorization formula (9) reduces to an identity in this case. 

Wigner functions yields the normalization relation 
(iii) Integrating the factorization relation (9) and using the orthogonality of the 
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@)As a consequence of symmetry and range (11) the Ci,n2n, vanish unless all 
indices satify the triangular rule 

(vj Tne coeficients havf the addiiionai symmetry 

which follows directly from (10). 

In the following we discuss two applications of the factorization formula (9). First 
the same relation has been derived for the probabilities P,,,, for vibrational transition 
n + n' in a forced anharmonic (Morse) oscillator [6] 

,,cc 

which is treated in an algebraic model following Levine and Wulfmann [ll]. In this 
model N + 1 is the number of vibrational states of the anharmonic oscillator. The 

consequence of the identical algebras underlying both cases. 
Let us now consider the limit j - 00 and 19 - 0, where e = 2jtan2(0/2) 

remains finite. Note that in the anharmonic oscillator reinterpretation this is the 
harmonic oscillator limit N -+ m. In this limit we have [12, 131 

coefficients can be identified by C,,,,,, (NI = Ci,,,,,,, with N = 23' which is simply a 

ana the memcients simpiiiy to 

lim c ~ . , , , . . = ( - I ) ~ c ( . ~ "  z-n'  )(.  z - n  , , ) ( . " I  a - n  ) 
i 1" 

and the factorization formula 

for the forced harmonic oscillator [5, 61 is obtained. In this limit the properties (i)- 
(iii) remain valid for the coefficients C,,, n,, in same form . Some simplifications of 
the other properties and a further relation are listed: 

( i t )  For non-vanishing C,,, nl n3  the inequality (iv) simplifies to the triangular rule 
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($)The symmetry relation (v) is meaningless. 

(vi')The coefficients C,,,,,, satisfy the additional sum rulet 

( ,' ) E( -1  )" (11) ( + 1 - ') } - 1 
k - n k+l -72 '  

~ Z ( - l ) ~ ( k - n ' + l )  
h P 

with p = 12 - n" and K = k + 1 - (n' + n).  

This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 91 and 
SSP Atom- und Molekiiltheorie). 
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PES) 

t Equation (23) has been derived in [6, Appendix A]. which "mains, however, some misprints. 


